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Geometric Phases in Magnetooptic
Channel Waveguide Devices

M. Concepcién Nistal, Jesds Lifiares, and Daniel Baldomir

Abstract— Geometric phases, generated by a coupling process
between TE and TM polarizations through anisotropic chiral
media—magnetooptic channel waveguides—are determined. In
fact, many of the conventional phase and frequency shifiers
are based on this geometrical effect, nevertheless, the physical
origin of these phase factors (spatial and temporal ones) has
never been explained. In this work a physical interpretation,
based on the topological phases theory, is given. Likewise, an
integrated interferometer is proposed for both generating and
checking these phases by changing the characteristics of the
channel waveguides. The relationship between geometric factors
and phase and frequency shifters is shown along the work.

1. INTRODUCTION

EOMETRIC phases in the cyclic evolution of many
Gphysical systems have been studied during the past few
years extensively. Numerous publications containing several
applications appeared in different fields such as, molecu-
lar physics [1], nuclear resonance [2], optics [3], neutrons
[4], electromagnetic coupling [5] and so on. Originally, the
geometric phase was introduced by Berry [6] for adiabatic
processes; further, Aharonov and Anandan (AA) [7] have
liberated it from the restriction to adiabatic evolution, and
Samuel and Bhandari [8] have given a general setting for
Berry’s phase: the evolution of the system need be neither
unitary nor cyclic.

Inside electromagnetic theory, geometric phases have been
determined for NV coupled electromagnetic wave amplitudes
evolving in their projective Hilbert space [5]. This kind of
system constitutes a general framework of geometric phases
for electromagnetic waves, that is, it includes geometric fac-
tors generated by polarization coupling, grating coupling [9],
multidirectional (in particular bidirectional) coupling [10] be-
tween planar or channel waveguides [5] and so on. On the
other hand, from a dynamical point of view, magnetooptic
(and anisotropic) channel waveguides have been proposed as
waveguide isolators [11]. These components allow a compact
integration of coherent devices in comunication systems. Thus,
isolators, circulators, phase shifters, rotators, and so on, based
on magnetooptic coupling, can be designed.

In this work we center our attention on the geometric phases
generated by the electromagnetic coupling process between
polarization states (TE-TM) caused by these anisotropic chi-
ral media—magnetooptic channel waveguides. In fact, many
magnetooptic devices can generate spatial and temporal phases
whose origin (as it will be proven) is of topological nature,
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being the primary aim of this work to show how these
phase factors can be generated and calculated. The main
characteristic of these geometric phases (nondynamical phase)
is that they take values which are not dependent on the
length of the channel waveguide. For instance, a simple phase
n was found for a pure Faraday rotation in an isotropic
magnetooptic medium [12]. Here we present a generalization
of this effect. First of all and for sake of simplicity we
analyze a 90° rotor which generates a phase shift in the
output state, after propagation along the channel waveguide.
This geometric phase can be controlled by changing the char-
acteristics of the channel waveguide (propagation constants
and magnetooptic coupling coefficient). Then, we propose an
interferometric system constituted by magnetooptic channel
waveguides generating geometric phases. Two experiments
are proposed, being the second one, from a theoretical point
of view, related to an Aharonov-Bohm (AB) effect on the
Poincare’s sphere (PS).

II. DYNAMICAL EVOLUTION

Let us consider an electromagnetic wave propagating
through an anisotropic channel waveguide. We can describe
the dynamical evolution in this system by a Schrodinger-type
equation in a two-dimentional projective Hilbert space [5]

Hlp) = i0z|p) (D

where z indicates the direction of propagation, H the relevant
Hamiltonian of the system and |<p>T = (i1, 02)T (T indicat-
ing transpose), and ¢ and g are the amplitudes of the TE and
TM modes respectively. In our case, the relevant Hamiltonian
can be written in a compact form as [5)

H= oy = /Bigézj + Cl0'2 (2)

where (1., is an effective tensor permeability with §;; and
B9 being the TE and TM propagation constants, C the
magnetooptic coupling coefficient and o9 the second Pauli’s
matrix.

By solving (1) we obtain after a long but straightforward
calculation, the following expression for the vector [p):
o) = (01, 02)" exp(raz) (3)
with « the halfsum of the TE and TM propagation constants
and

o1 = erOoostrs) + [ {2 inga |

+ <p2<0>{ [(e—ﬁ—ﬂ sin(wz)} @
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vector (v1(0), ©2(0)) represents the TE-TM components of the
electromagnetic wave at the input plane z = 0; v and S_ are
given by the following expresions

v =4/ (% +C?) (6)
8 = P11 — B2 7
2
and e is related to the anisotropy of the medium through the
relationship
p- p-\’
=—= — 1]. 8
ex =5 o) T (3)

Note that for 5 = 0, et = %1, and therefore a pure Faraday
rotator is obtained.

III. GEOMETRIC PHASES

In this section, we analyze the geometric properties of
the electromagnetic TE-TM coupling through a magnetooptic
channel waveguide. We must stress that the TE and TM
propagation constants of the magnetoooptic channel wave-
guide—defined in the Hamiltonian equation (2)—are not very
different, therefore the geometric factors derived in this section
are of the AA type [7]; that is, the adiabatic evolution will not
be invoked. Thus following the Aharonov—Anandan’s criterion
[7] to determine geometric phases for any closed circuit on the
projective Hilbert space, the geometric factor can be evaluated
by the following equation

¢G=¢+A<ﬂHWMZ ©)

where d is the traveled space, ¥ is the full phase and the
integral term is equal to minus the dynamical phase. Due to the
topological nature of these factors they can be also expressed
in a geometrical form as [6]

b = +50(L) 10)
where L is the circuit followed by the vector |¢) on the PS
(two-dimensional Hilbert space) and €2(L) is the solid angle
subtended by the circuit L from the origin of the PS.

Let us consider that the Hamiltonian given by (2) acts on
the initial state b(1, l)T (point A on the sphere; see Fig. 1)
where b is a normalization constant: then the state at a depth
z = d in the channel waveguide can be calculated from (4),
(5). Thus, if the following relationship is fulfilled

(2n+1)
Y=

2 T an

then the orthogonal state b(1,—1)7 is reached (point B in
Fig. 1), where the vector |¢) has followed the geodesic indi-
cated in Fig. 1. The circuit can be closed (in a geometrical

Y

Fig. 1. Poincare’s sphere showing the paths followed by the polarization
state of the electromagnetic wave in this work.

way) by the geodesic along equator (slice circuit) [5]. From
a physical point of view the circuit can be closed along
equator by an isotropic channel waveguide. The geometric
phase acquired by the state at point B can be obtained in
the following way: first, we calculate the integral term in (9)
(dynamical phase) by using (2)—(5), therefore

QT

d
téwwmwz—e

12
5 (12)

then, from (3)—(5), the full phase acquired by the state
b(l,—l)T at point B can be obtained taking into account
that the state |} can be rewritten as

lo) = b[B —iA](1,1)Teod (13)
where
- 2
A= ey te- B—__ <~ (14)
ey —e_ er — e
which fulfills the following relationship
A2+ B? =1. (15)

Now, we express the above relationships in such a way the
parameters of the device can be related with the topological
circuit on the Poincare’s sphere (slice circuit; see Fig. 1) that
is,

A:sin(%—ﬂ):cos&:% (16)
B:cos(—g—g):sinézg (17)

where 6 is the angular extension of the slice circuit described
by the state |¢). Now, inserting these equations in (13) we
obtain

) S (n+d
o) :bexp{z(g~9) +za( ” 2)7r](1,—1)T. (18)
Therefore, from this equation the full phase is given by

b= {(f —9) +a(n‘:aw}

7 (19)
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Finally, from (9), the geometric phase acquired by the state
at point B on the Poincare’s sphere is given by

b = (5-9).

Likewise, if we use (10) for the circuit described by the
state |) on the PS, after a straightforward calculation, the
solid angle obtained is given by

(20)

Q(L):2¢>G:/ d@/ sin@dyp = 1 — 20 (21)
6 0

as it was expected. Note that the geometric phase can be
controlled by changing the device parameters, giving rise to
different values of £ in (20). However, for changes different
to the values given by (11), point B on the sphere is no longer
reached by the electromagnetic state but an arbitrary point
P (see Fig. 1). In this case, we still could close the circuit
by a nonunitary transformation: for instance, by inserting
a polarizer at the output plane of the channel waveguide,
the orthogonal state b(1,—1)T can be always obtained. For
showing this case, let us consider a polarizer which can be
represented by the following matrix operator P

/1 -1
P—§<—l 1)

that is, its transmission axis forms an angle —7 /4 with z-axis.
When this polarizer acts on the state |¢)T, given by (3)~(5),
it is obtained, after a strightforward calculation, the following
state

22)

V2 . e
lo)p = 5 sin(yd) exp [z(g - 9)]6 “1,-1)  (23)
where
~ (P11 — Pa2)
7T T ocosd @)

It corresponds to the evolution of the state [¢) along geodesic
connecting the point P with B (see Fig. 1). Now, performing
the above calculations for evaluating the geometric factors
it can be easily proven that the geometric phase given by
(21) is again obtained. Note that in this case the energy has
decreased due to the nonunitary tranformation performed by
the polarizer. We must indicate that the geometric phases
generated by a coupling process between polarization states,
caused by an anysotropic chiral medium, corresponds to the
generalization of the geometric phase « obtained by a pure
Faraday rotation [12], produced by an isotropic chiral medium
acting on a linear polarization state. In our case a geometric
phase equal to 7 is generated if d' = m/v. Moreover, we
also must stress that the same results could be obtained by
using a magnetooptic bidirectional coupler [13], where the two
waveguides play the role of TE and TM modes. In short, we
have proven that a phase shift can have a fully topological
origin, and its value depends on the path followed by the
electromagnetic field in its projective Hilbert space.

An explicit example of device using these geometric effects
corresponds to a reciprocal ferrite phase shifter developed by
Boyd [14] (which could be implemented by magnetooptical
waveguides). This device is a magnetically variable version

of a rotatory-vane phase shifter described by Fox [15]. The
Fox phase shifter is constituted by a fixed quarter-wave
plate (QWP), a rotatable half-wave plate (HWP) and another
fixed quarter-wave plate. An input field linearly polarized is
launched into the first QWP (which is tilted at 45° with respect
to the polarization direction of the input field).

The total delay is (K + 26), where K is the minimun
phase delay through the device (that is, a dynamical phase)
and @ is the tilt angle of the rotatable HWP. A full 360°
geometrical range of phase shift can be obtained in analog
form by varying 6 through 180°. If we apply the topological
results described above it can be shown starting from (9). after
a long but straightforward calculation, that the geometric phase
is ¢4 = 26, and the dynamical phase is equal to K. This result
can be easily proven by using the geometrical point of view
(10). Boyd sustituted a ferrite rod with a rotatable transverse
bias field for Fox’s mechanically rotatable HWP, therefore the
geometrical results are identical to those ones obtained for the
Fox’s device.

On the other hand, when @ is varied with an angular speed
equal to wg then a temporal phase shift is obtained (that is
(wo + w)t, where w is the central frequency of the input
signal), which has a fully geometrical origin.

IV. EXPERIMENTAL SYSTEM

We present two experimental arrangements for both ob-
taining and measuring the geometric phases generated by
magnetooptic waveguides. The first of them corresponds to the
device analyzed previously, the second one provides a simple
arrangement for measuring geometric phases independently of
the value of the dynamical phase (note that (23) only is not a
function of ~yd (dynamical phase) for a discrete set of values
given by (11)).

Let us consider an integrated Mach—Zehnder type interfer-
ometer, where each arm is a magnetooptic channel waveguide
supporting TE and TM modes with different propagation
constants. We start from an initial state at input plane z =
0, that is, the energy is launched in magnetooptic guides G1
and G, (see Fig. 2(a)) by a splitting process, performed by
isotropic dielectric channel waveguides, at point (0, z;). with
initial intensity unity. Guide 2 is designed in such a way
that S_ is reversed with respect to guide 1. By changing
the waveguide's parameters of guides G and G (by electric
and magnetic external fields), we can make measurements of
intensity at point (0, 7) for different values of the geometric
phase (see Fig. 2(a)). For making sure that the orthogonal state
b(1,—1) is reached a polarizer with transmission axis at 45°
is located at plane 7; therefore, following the resuits of the
Section III, the geometric factors generated are (7/2 — ) (by
guide 1) and (/2 + 8) (by guide 2); now, taking into account
(23) the total intensity at point (0, 7) is given by

I = sin®(7yd) cos® 6. (25)

Note that if vd takes the values (2n + 1) «/2 the intensity
becomes

I =cos?f (26)
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Fig. 2. (a) Schematic arrangement of an integrated interferometer whose
arms are magnetooptic channel waveguides. (b) Schematic arrangement of
a magnetooptic polarizer.

that is, the changes in the intensity only come from the
geometric phase acquired by the state along the system.

Now, in order to obtain values of the intensity independent
on the dynamical phase, we again consider the Mach-Zehnder
interferometer. Nevertheless, in this case we consider C' =0
(the external magnetic field is switch off) in the guides G and
Gi2; moreover we choose a length 2z = 7 /2 in a such a way
that the state |¢) at the point (0, zg) is circularly polarized;
in particular, since guide 2 is designed with S_ reversed with
respect to guide 1, the light coming from arm 1 is LH at
point (0, z). and the light coming from arm 2 is RH at
that point. Now, in the common path z; — 7 the following
consecutive channel waveguides are inserted (see Fig. 2(b)):
first of them (MI1) is a magnetooptic isotropic waveguide
(8- = 0) which provides a rotation p = Cd (with d the length
of the waveguide), the second one is a monomode waveguide
(D), in particular only the TE mode can be propagated, and
finally the third one (M2) is another magnetooptic isotropic
waveguide with the external magnetic field reversed, in a such
a way that a rotation —p is produced. The three waveguides
constitute a magnetooptic polarizer.

Let us consider that at point z, the state b(1, 1)?' is launched;
from a geometrical point of view (for this case we do not
perform analytical calculations, in order to show the power
of the geometrical approach), the guide | transports the initial
state up to the north pole of the PS, and the second one one
down the south pole (see Fig. 2). Now, the device along the
path z, — 7 acts as a polarizer with transmission axis forming
an angle p with respect to the TE-TM basis, therefore, the
circular states reach the same point on the equator of the PS
(AB effect on the PS). The global circuit is a slice one, thus

the half solid angle subtended (geometric phase) is given by

™
¢ = ¢ — 5
where ¢ is the azimuthal angle shown in Fig. 2. This angle
is related to the physical parameters of the magnetooptic
isotropic guides in the following way

@7

v = 2p = 204. (28)
Finally, since the intensity of the states interfering at point
(0,7) is the same, then the total intensity detected will be

equal to
I = cos? (%) = cos? (% — %)
—cos2 (o= T\ = cos? _r
= cos (p 4)——COS (Cd 4).

Therefore, starting from the intensity measurements the
geometric factor can be measured. Note that in this arrangment
the dynamical phase has been cancelled.

In order to show the possible applications, we must stress
that the geometric factor can be used for producing phase
shifts (as it can be visualized from (18)). Moreover, when
they are varied along the time a frequency shift is obtained;
for instance, if we assume that p = wgt (i.e., the external
magnetic field is varied linearly with the time), with w, much
smaller that the carrier frequency w then a frequency shift
Aw = w, can be generated. In short temporal and spatial
phase shift have a fully geometrical origin, that is, they are
independent on the dynamical evolution. We must stress that
some phase shifts can have a fully dynamical origin in whose
case the geometrical phase given by (9) or (10) must be zero.

29)

V. CONCLUSION

In conclusion, phase shifts generated by a coupling process
in a magnetooptic channel waveguide have been presented. In
particular the geometric phases produced by a 90°-rotor have
been calculated by both geometrical and analytical methods.
These phase factors have a geometrical origin, therefore they
can be calculated by a geometrical approach, in this way,
many of the conventional phase and frequency shifters can
be explained by this topological approach, and likewise new
shifters can be designed. On the other hand, an interferometric
system has been described in order to both generate and
measure these phases.
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