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Geometric Phases in Magnetooptic
Channel Waveguide Devices

M. Concepci6n Nistal, Jestls

Abstract—Geometric phases, generated by a coupling process
between TE and TM polarizations through anisotropic chiral
media—magnetooptic channel waveguides—are determined. In
fact, many of the conventional phase and frequency shifters
are based on thk geometrical effect, nevertheless, the physical
origin of these phase factors (spatial and temporat ones) has
never been explained. In thk work a physical interpretation,
based on the topological phases theory, is given. Likewise, an
integrated interferometer is proposed for both generating and
checking these phases by changing the characteristics of the
channel waveguides. The relationship between geometric factors
and phase and frequency shifters is shown along the work.

1. INTRODUCTION

GEOMETRIC phases in the cyclic evolution of many

physical systems have been studied during the past few
years extensively. Numerous publications containing several
applications appeared in different fields such as, molecu-
lar physics [1], nuclear resonance [2], optics [3], neutrons

[4], electromagnetic coupling [5] and so on. Originally, the

geometric phase was introduced by Berry [6] for adiabatic
processes; further, Aharonov and Anandan (AA) [7] have
liberated it from the restriction to adiabatic evolution, and
Samuel and Bhandari [8] have given a general setting for
Berry’s phase: the evolution of the system need be neither

unitary nor cyclic.
Inside electromagnetic theory, geometric phases have been

determined for N coupled electromagnetic wave amplitudes

evolving in their projective Hilbert space [5], This kind of

system constitutes a general framework of geometric phases
for electromagnetic waves, that is, it includes geometric fac-

tors generated by polarization coupling, grating coupling [9],
multidirectional (in particular bidirectional) coupling [10] be-
tween planar or channel waveguides [5] and so on. On the
other hand, from a dynamical point of view, magnetooptic

(and anisotropic) channel waveguides have been proposed as

waveguide isolators [11]. These components allow a compact

integration of coherent devices in communication systems. Thus,
isolators, circulators, phase shifters, rotators, and so on, based
on magnetooptic coupling, can be designed.

In this work we center our attention on the geometric phases

generated by the electromagnetic coupling process between
polarization states (TE-TM) caused by these anisotropic chi-
ral media—magnetooptic channel waveguides. In fact, many

magnetooptic devices can generate spatial and temporal phases

whose origin (as it will be proven) is of topological nature,
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being the primary aim of this work to show how these

phase factors can be generated and calculated. The main
characteristic of these geometric phases (nondynamical phase)
is that they take values which are not dependent on the
length of the channel waveguide. For instimce, a simple phase

n was found for a pure Faraday rotation in an isotropic

magnetooptic medium [12]. Here we present a generalization
of this effect. First of all and for sake of simplicity we
analyze a 90° rotor which generates a phase shift in the

output state, after propagation along the channel waveguide.
This geometric phase can be controlled by changing the chm-
acteristics of the channel waveguide (propagation constants
and magnetooptic coupling coefficient). Then, we propose an
interferometric system constituted by magnetooptic channel
waveguides generating geometric phases. Two experiments
are proposed, being the second one, from a theoretical point

of view, related to an Aharonov–Bohm (AB ) effect on the
Poincare’s sphere (PS).

II. DYNAMICAL EVOLUTION

Let us consider an electromagnetic wave propagating

through an anisotropic channel waveguide. We can describe

the dynamical evolution in this system by a Schrodinger-type
equation in a two-dimentional projective Hilbert space [5]

H]@) = idz]p) (1)

where z indicates the direction of propagation, H the relevant

Hamiltonian of the system and IP)T = (P1, 92)T (2’ indicat-
ing transpose), and PI and W2are the amplitudes of the TE and
TM modes respectively. In our case, the relevant Harniltonian
can be written in a compact form as [5]1

H = ~tj = Balrfzj + CG2 (2)

where p,] is an effective tensor permeability with @l1 and

p22 being the ‘fE and TM propagation constants, C the
magnetooptic coupling coefficient and 02 the second Patdi’s
matrix.

By solving (1) we obtain after a long but straightforward
calculation, the following expression for the vector

with a the halfsum of the TE and TM propagation
and

Iv):
(3)

constants

{ [Hlsin(’z)}
w = 91 (0) co’(w) + ‘i

‘92(0){ [(e+usin(z)} ‘4)
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~’=@’’0’{[(e+21 sin(2’}

{ [[5:11’’’’(7Z)} ‘5)
+ pz(o) Cos(’-yz) – ‘i

vector (ql (0), P?(O)) represents the TE-TM components of the
electromagnetic wave at the input plane z = O; y and /1 are
given by the following expressions

g = Pll - /322

2

(6)

(7)

and et is related to the anisotropy of the medium through the
relationship

(8)

Note that for @_ = O, e+ = +1, and therefore a pure Faraday
rotator is obtained.

III. GEOMETRIC PHASES

In this section, we analyze the geometric properties of
the electromagnetic TE-TM coupling through a magnetooptic
channel waveguide. We must stress that the TE and TM
propagation constants of the magnetoooptic channel wave-

guide—defined in the Hamiltonian equation (2)—are not very
different, therefore the geometric factors derived in this section

are of the AA type [7]; that is, the adiabatic evolution will not
be invoked. Thus following the Aharonov–Anandan’s criterion
[7] to determine geometric phases for any closed circuit on the
projective Hilbert space, the geometric factor can be evaluated
by the following equation

where d is the traveled space, V is the full phase and the

integral term is equal to minus the dynamical phase. Due to the
topological nature of these factors they can be also expressed
in a geometrical form as [6]

(10)

where L is the circuit followed by the vector Ip) on the PS
(two-dimensional Hilbert space) and fl(L) is the solid angle
subtended by the circuit L from the origin of the PS.

Let us consider that the Hamiltonian given by (2) acts on

the initial state b( 1, 1) T (point A on the sphere; see Fig. 1)
where b is a normalization constant: then the state at a depth
x = d in the channel waveguide can be calculated from (4),
(5). Thus, if the following relationship is fulfilled

(2n + 1)
~= ~d T (11)

then the orthogonal state b(l, – 1)T is reached (point B in

Fig. 1), where the vector Ip) has followed the geodesic indi-

cated in Fig. 1. The circuit can be closed (in a geometrical

z

x

Y

Fig. 1. Poincare’s sphere showing the paths followed by the polarization
state of the electromagnetic wave in this work.

way) by the geodesic along equator (slice circuit) [5]. From

a physical point of view the circuit can be closed along
equator by an isotropic channel waveguide. The geometric
phase acquired by the state at point B can be obtained in

the following way: first, we calculate the integral term in (9)

(dynamical phase) by using (2)-(5), therefore

(12)

then, from (3)–(5), the full phase acquired by the state

b(l, – I)T at point B can be obtained taking into account
that the state Ip) can be rewritten as

Iv)= b[~ - ~A](l,l)Te’Gd (13)

where

A=e++e.
B=

2

e+ — e– e+ — e–

which fulfills the following relationship

(14)

A2+B2=I. (15)

Now, we express the above relationships in such a way the

parameters of the device can be related with the topological

circuit on the Poincare’s sphere (slice circuit; see Fig. 1) that

is.

(16)()A= sin ~–0 =cos Q=E

()

11
B=cos ~

:
–,9 =si~Q=— (17)

7

where d is the angular extension of the slice circuit described

by the state /p). Now, inserting these equations in (13) we

obtain

[( )Ip)=bexp i ~–d +ia
(n+ *)

1
7r (1, –1)~. (18)

T

Therefore, from this equation the full phase is given by

[( )--, +Jn++)m‘/j= T
2 ‘Y 1

(19)
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Finally, from (9), the geometric phase acquired by the state

at point B on the Poincare’s sphere is given by

$G=(;-9). (20)

Likewise, if we use (10) for the circuit described by the

state \p) on the PS, after a straightforward calculation, the

solid angle obtained is given by

;

J./
?-r

Q(L) = 2#~ = do sin pdp = T – 26 (21)
o 0

as it was expected. Note that the geometric phase can be

controlled by changing the device parameters, giving rise to

different values of 0 in (20). However, for changes different

to the values given by (11), point B on the sphere is no longer

reached by the electromagnetic state but an arbitrary point

P (see Fig. 1). In this case, we still could close the circuit

by a nonunitary transformation: for instance, by inserting

a polarizer at the output plane of the channel waveguide,

the orthogonal state b( 1, – 1)T can be always obtained. For

showing this case, let us consider a polarizer which can be

represented by the following matrix operator P

()P=: 1 –;
2 –1

(22)

that is, its transmission axis forms an angle –m/4 with x-axis.
When this polarizer acts on the state IP)T, given by (3)-(5),

it is obtained, after a strightforward calculation, the following

state

&.
IP)B = y Sm(vd)f=p [Z(; - d)]e’ad(l, -1) (23)

where

~ = (811 - P22)

2COS6’ “
(24)

It corresponds to the evolution of the state 1P) along geodesic

connecting the point P with B (see Fig. 1). Now, performing

the above calculations for evaluating the geometric factors
it can be easily proven that the geometric phase given by
(21) is again obtained. Note that in this case the energy has
decreased due to the nonunitary tranformation performed by
the polarizer. We must indicate that the geometric phases
generated by a coupling process between polarization states,

caused by an anysotropic chiral medium, corresponds to the
generalization of the geometric phase m obtained by a pure
Faraday rotation [12], produced by an isotropic chiral medium

acting on a linear polarization state. In our case a geometric
phase equal to T is generated if d’ = T/T. Moreover, we
also must stress that the same results could be obtained by
using a magnetooptic bidirectional coupler [13], where the two
waveguides play the role of TE and TM modes. In short, we
have proven that a phase shift can have a fully topological

origin, and its value depends on the path followed by the

electromagnetic field in its projective Hilbert space.

An explicit example of device using these geometric effects

corresponds to a reciprocal ferrite phase shifter developed by

Boyd [14] (which could be implemented by magnetooptical

waveguides). This device is a magnetically variable version

of a rotatory-vane phase shifter described by Fox [15]. The
Fox phase shifter is constituted by a fixed quarter-wave
plate (QWP), a rotatable half-wave plate (HWP) and another

fixed quarter-wave plate. An input field linearly polarized is

launched into the first QWP (which is tilted at 45° with respect

to the polarization direction of the input field).
The total delay is (~ + 20), where K is the minimun

phase delay through the device (that is, a dynamical phase)

and t? is the tilt angle of the rotatable HWP. A full 360°
geometrical range of phase shift can be obtained in analog
form by varying O through 180°. If we apply the topological
results described above it can be shown starting from (9), after
a long but straightforward calculation, that the geometric phase
is q5g= 20, and the dynamical phase is equal to ~. This result

can be easily proven by using the geometrical point of view
(10). Boyd substituted a ferrite rod with al rotatable transverse

bias field for Fox’s mechanically rotatable HWP, therefore the
geometrical results are identical to those ~cmesobtained for the
Fox’s device.

On the other hand, when 0 is varied with an angular speed

equal to uo then a temporal phase shift is obtained (that is
(w. + ti)t, where w is the central frequency of the input
signal), which has a fully geometrical origin.

IV. EXPERIMENTAL SYSTEM

We present two experimental arrangements for both ob-
taining and measuring the geometric phases generated by
magnetooptic waveguides. The first of them corresponds to the

device analyzed previously, the second one provides a simple
arrangement for measuring geometric phases independently of
the value of the dynamical phase (note that (23) only is not a
function of ~d (dynamical phase) for a discrete set of values
given by (1 l)).

Let us consider an integrated Mach–Zehnder type interfer-

ometer, where each arm is a magnetoopti c channel waveguide
supporting TE and TM modes with different propagation

constants. We start from an initial state at input plane z =
O, that is, the energy is launched in magnetooptic guides GI
and Gz (see Fig. 2(a)) by a splitting process, performed by
isotropic dielectric channel waveguides, at point (O, ,z~). with
initial intensity unity. Guide 2 is designed in such a way
that /3– is reversed with respect to guide 1. By changing

the waveguide’s parameters of guides G1 and G2 (by electric

and magnetic external fields), we can make measurements of
intensity at point (O, ~) for different vallues of the geometric

phase (see Fig. 2(a)). For making sure thi~t the orthogonal state
b(l, – 1) is reached a polarizer with transmission axis at 45°
is located at plane ~; therefore, following the results of the
Section III, the geometric factors generated are (fl/2 – o) (by

guide 1) and (7r/2 + 6) (by guide 2); now, taking into account
(23) the total intensity at point (O, ~) is given by

1 = sinz(~d)COS20. (25)

Note that if -yd takes the values (2n + 1) 7r/2 the intensity
becomes

I = COS26 (26)
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Fig. 2. (a) Schematic arrangement of an integrated interferometer whose
arms are magnetoophc channel waveguides. (b) Schematic arrangement of
a magnetooptic polarizer.

that is, the changes in the intensity only come from the

geometric phase acquired by the state along the system,

Now, in order to obtain values of the intensity independent

on the dynamical phase, we again consider the Mach–Zehnder

interferometer. Nevertheless, in this case we consider C =0

(the external magnetic field is switch off) in the guides GI and

G2; moreover we choose a length z = 7r/27 in a such a way

that the state Ip) at the point (O, Zo) is circularly polarized;

in particular, since guide 2 is designed with ~– reversed with

respect to guide 1, the light coming from arm 1 is LH at

point (0, Zo). and the light coming from arm 2 is RH at

that point. Now, in the common path Z. – ~ the following

consecutive channel waveguides are inserted (see Fig. 2(b)):
first of them (M 1) is a magnetooptic isotropic waveguide

(~- = 0 which provides a rotation p = Cd (with d the length
of the waveguide), the second one is a monomode waveguide

(~), in particular only the TE mode can be propagated, and
finally the third one (M2) is another magnetooptic isotropic

waveguide with the external magnetic field reversed, in a such
a way that a rotation —p is produced. The three waveguides

constitute a magnetooptic polarizer.

Let us consider that at point z, the state b(l, 1)* is launched;
from a geometrical point of view (for this case we do not

perform analytical calculations, in order to show the power
of the geometrical approach), the guide 1 transports the initial

state up to the north pole of the PS, and the second one one

down the south pole (see Fig. 2). Now, the device along the

path z, – r acts as a polarizer with transmission axis forming
an angle p with respect to the TE-TM basis, therefore, the
circular states reach the same point on the equator of the PS

(AB effect on the PS). The global circuit is a slice one, thus

the half solid angle subtended (geometric phase) is given by

(27)

where p is the azimuthal angle shown in Fig. 2. This angle
is related to the physical parameters of the magnetooptic
isotropic guides in the following way

~ = 2p = 2Cd. (28)

Finally. since the intensity of the states interfering at point

(O, T) is the same, then the total intensity detected will be
equal to

I = COS2
(%) ‘Cos’(;-:)

‘coS’(”-:) ‘coS’(cd-:) ‘2’)

Therefore, starting from the intensity measurements the

geometric factor can be measured. Note that in this arrangement

the dynamical phase has been cancelled.
In order to show the possible applications, we must stress

that the geometric factor can be used for producing phase
shifts (as it can be visualized from (18)). Moreover, when
they are varied along the time a frequency shift is obtained;
for instance, if we assume that p = Wgt (i.e., the external
magnetic field is varied linearly with the time), with ti~ much
smaller that the carrier frequency w then a frequency shift
Aw = Wg can be generated. In short temporal and spatial
phase shift have a fully geometrical origin, that is, they are
independent on the dynamical evolution. We must stress that

some phase shifts can have a fully dynamical origin in whose

case the geometrical phase given by (9) or (10) must be zero.

V. CONCLUSION

In conclusion, phase shifts generated by a coupling process

in a magnetooptic channel waveguide have been presented. In

particular the geometric phases produced by a 900-rotor have

been calculated by both geometrical and analytical methods.

These phase factors have a geometrical origin, therefore they

can be calculated by a geometrical approach, in this way,

many of the conventional phase and frequency shifters can

be explained by this topological approach, and likewise new

shifters can be designed. On the other hand, an interferometric

system has been described in order to both generate and

measure these phases.
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